Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Agrobacterium-mediated transient gene expression and silencing: a rapid tool for functional gene assay in potato.

Identifieur interne : 000659 ( Main/Exploration ); précédent : 000658; suivant : 000660

Agrobacterium-mediated transient gene expression and silencing: a rapid tool for functional gene assay in potato.

Auteurs : Pudota B. Bhaskar [États-Unis] ; Muthusubramanian Venkateshwaran ; Lei Wu ; Jean-Michel Ané ; Jiming Jiang

Source :

RBID : pubmed:19503835

Descripteurs français

English descriptors

Abstract

Potato is the third most important food crop worldwide. However, genetic and genomic research of potato has lagged behind other major crops due to the autopolyploidy and highly heterozygous nature associated with the potato genome. Reliable and technically undemanding techniques are not available for functional gene assays in potato. Here we report the development of a transient gene expression and silencing system in potato. Gene expression or RNAi-based gene silencing constructs were delivered into potato leaf cells using Agrobacterium-mediated infiltration. Agroinfiltration of various gene constructs consistently resulted in potato cell transformation and spread of the transgenic cells around infiltration zones. The efficiency of agroinfiltration was affected by potato genotypes, concentration of Agrobacterium, and plant growth conditions. We demonstrated that the agroinfiltration-based transient gene expression can be used to detect potato proteins in sub-cellular compartments in living cells. We established a double agroinfiltration procedure that allows to test whether a specific gene is associated with potato late blight resistance pathway mediated by the resistance gene RB. This procedure provides a powerful approach for high throughput functional assay for a large number of candidate genes in potato late blight resistance.

DOI: 10.1371/journal.pone.0005812
PubMed: 19503835
PubMed Central: PMC2686102


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Agrobacterium-mediated transient gene expression and silencing: a rapid tool for functional gene assay in potato.</title>
<author>
<name sortKey="Bhaskar, Pudota B" sort="Bhaskar, Pudota B" uniqKey="Bhaskar P" first="Pudota B" last="Bhaskar">Pudota B. Bhaskar</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Venkateshwaran, Muthusubramanian" sort="Venkateshwaran, Muthusubramanian" uniqKey="Venkateshwaran M" first="Muthusubramanian" last="Venkateshwaran">Muthusubramanian Venkateshwaran</name>
</author>
<author>
<name sortKey="Wu, Lei" sort="Wu, Lei" uniqKey="Wu L" first="Lei" last="Wu">Lei Wu</name>
</author>
<author>
<name sortKey="Ane, Jean Michel" sort="Ane, Jean Michel" uniqKey="Ane J" first="Jean-Michel" last="Ané">Jean-Michel Ané</name>
</author>
<author>
<name sortKey="Jiang, Jiming" sort="Jiang, Jiming" uniqKey="Jiang J" first="Jiming" last="Jiang">Jiming Jiang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19503835</idno>
<idno type="pmid">19503835</idno>
<idno type="doi">10.1371/journal.pone.0005812</idno>
<idno type="pmc">PMC2686102</idno>
<idno type="wicri:Area/Main/Corpus">000635</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000635</idno>
<idno type="wicri:Area/Main/Curation">000635</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000635</idno>
<idno type="wicri:Area/Main/Exploration">000635</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Agrobacterium-mediated transient gene expression and silencing: a rapid tool for functional gene assay in potato.</title>
<author>
<name sortKey="Bhaskar, Pudota B" sort="Bhaskar, Pudota B" uniqKey="Bhaskar P" first="Pudota B" last="Bhaskar">Pudota B. Bhaskar</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Venkateshwaran, Muthusubramanian" sort="Venkateshwaran, Muthusubramanian" uniqKey="Venkateshwaran M" first="Muthusubramanian" last="Venkateshwaran">Muthusubramanian Venkateshwaran</name>
</author>
<author>
<name sortKey="Wu, Lei" sort="Wu, Lei" uniqKey="Wu L" first="Lei" last="Wu">Lei Wu</name>
</author>
<author>
<name sortKey="Ane, Jean Michel" sort="Ane, Jean Michel" uniqKey="Ane J" first="Jean-Michel" last="Ané">Jean-Michel Ané</name>
</author>
<author>
<name sortKey="Jiang, Jiming" sort="Jiang, Jiming" uniqKey="Jiang J" first="Jiming" last="Jiang">Jiming Jiang</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gene Expression Regulation (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Silencing (MeSH)</term>
<term>Genetic Techniques (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Green Fluorescent Proteins (metabolism)</term>
<term>Phytophthora infestans (metabolism)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Plasmids (metabolism)</term>
<term>RNA Interference (MeSH)</term>
<term>Rhizobium (genetics)</term>
<term>Solanum tuberosum (genetics)</term>
<term>Solanum tuberosum (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Extinction de l'expression des gènes (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Génotype (MeSH)</term>
<term>Interférence par ARN (MeSH)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Phytophthora infestans (métabolisme)</term>
<term>Plasmides (métabolisme)</term>
<term>Protéines à fluorescence verte (métabolisme)</term>
<term>Rhizobium (génétique)</term>
<term>Régulation de l'expression des gènes (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Solanum tuberosum (génétique)</term>
<term>Solanum tuberosum (microbiologie)</term>
<term>Techniques génétiques (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Green Fluorescent Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Diseases</term>
<term>Rhizobium</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Rhizobium</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Phytophthora infestans</term>
<term>Plasmids</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Phytophthora infestans</term>
<term>Plasmides</term>
<term>Protéines à fluorescence verte</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Silencing</term>
<term>Genetic Techniques</term>
<term>Genome, Plant</term>
<term>Genotype</term>
<term>Plants, Genetically Modified</term>
<term>RNA Interference</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Extinction de l'expression des gènes</term>
<term>Génome végétal</term>
<term>Génotype</term>
<term>Interférence par ARN</term>
<term>Régulation de l'expression des gènes</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Techniques génétiques</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Potato is the third most important food crop worldwide. However, genetic and genomic research of potato has lagged behind other major crops due to the autopolyploidy and highly heterozygous nature associated with the potato genome. Reliable and technically undemanding techniques are not available for functional gene assays in potato. Here we report the development of a transient gene expression and silencing system in potato. Gene expression or RNAi-based gene silencing constructs were delivered into potato leaf cells using Agrobacterium-mediated infiltration. Agroinfiltration of various gene constructs consistently resulted in potato cell transformation and spread of the transgenic cells around infiltration zones. The efficiency of agroinfiltration was affected by potato genotypes, concentration of Agrobacterium, and plant growth conditions. We demonstrated that the agroinfiltration-based transient gene expression can be used to detect potato proteins in sub-cellular compartments in living cells. We established a double agroinfiltration procedure that allows to test whether a specific gene is associated with potato late blight resistance pathway mediated by the resistance gene RB. This procedure provides a powerful approach for high throughput functional assay for a large number of candidate genes in potato late blight resistance.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19503835</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>11</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>4</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jun</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Agrobacterium-mediated transient gene expression and silencing: a rapid tool for functional gene assay in potato.</ArticleTitle>
<Pagination>
<MedlinePgn>e5812</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0005812</ELocationID>
<Abstract>
<AbstractText>Potato is the third most important food crop worldwide. However, genetic and genomic research of potato has lagged behind other major crops due to the autopolyploidy and highly heterozygous nature associated with the potato genome. Reliable and technically undemanding techniques are not available for functional gene assays in potato. Here we report the development of a transient gene expression and silencing system in potato. Gene expression or RNAi-based gene silencing constructs were delivered into potato leaf cells using Agrobacterium-mediated infiltration. Agroinfiltration of various gene constructs consistently resulted in potato cell transformation and spread of the transgenic cells around infiltration zones. The efficiency of agroinfiltration was affected by potato genotypes, concentration of Agrobacterium, and plant growth conditions. We demonstrated that the agroinfiltration-based transient gene expression can be used to detect potato proteins in sub-cellular compartments in living cells. We established a double agroinfiltration procedure that allows to test whether a specific gene is associated with potato late blight resistance pathway mediated by the resistance gene RB. This procedure provides a powerful approach for high throughput functional assay for a large number of candidate genes in potato late blight resistance.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bhaskar</LastName>
<ForeName>Pudota B</ForeName>
<Initials>PB</Initials>
<AffiliationInfo>
<Affiliation>Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Venkateshwaran</LastName>
<ForeName>Muthusubramanian</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Lei</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ané</LastName>
<ForeName>Jean-Michel</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Jiming</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>06</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>147336-22-9</RegistryNumber>
<NameOfSubstance UI="D049452">Green Fluorescent Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="Y">Gene Expression Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020868" MajorTopicYN="Y">Gene Silencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005821" MajorTopicYN="N">Genetic Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049452" MajorTopicYN="N">Green Fluorescent Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055750" MajorTopicYN="N">Phytophthora infestans</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034622" MajorTopicYN="N">RNA Interference</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012231" MajorTopicYN="N">Rhizobium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011198" MajorTopicYN="N">Solanum tuberosum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>03</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>04</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>11</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19503835</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0005812</ArticleId>
<ArticleId IdType="pmc">PMC2686102</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):1050-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19109416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jul;135(3):1256-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jan;49(2):208-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17173544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2007;354:35-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17172742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Dec;36(6):867-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Feb;146(2):515-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18083796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2006 Nov;7(6):499-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biotechnol. 2008;8:36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18384693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(8):e2875</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18682852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 May;11(5):781-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10330465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Mar;33(5):949-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12609035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2005 Mar;3(2):259-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17173625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008;8:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18215301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Jan;31(1):165-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17999659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 May;30(3):361-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12000683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(4):2019-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17487191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jul;39(2):264-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15225290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2006 Dec 27;54(26):9882-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17177515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Mar;21(3):294-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18257679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jan;140(1):3-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16403736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jun 17;308(5729):1789-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Aug;21(8):1015-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18616398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2008 May;27(5):845-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18256839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2008 Jun;27(6):1053-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18317773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 May;7(5):193-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11992820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9128-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12872003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jan;41(1):15-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15610346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Aug;20(8):912-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17722695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Apr;42(2):251-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15807786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Oct;44(2):208-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16212601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2005 Sep 30;91(7):861-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15937952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Jun;22(6):543-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10886774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Apr;13(4):439-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10755307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 May;9(3):385-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18705878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Jun;8(6):252-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12818658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Apr;134(4):1308-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15084725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Apr;22(4):447-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19271959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Apr;17(4):428-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15077675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Nov;59(4):647-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16244913</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Wisconsin</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Ane, Jean Michel" sort="Ane, Jean Michel" uniqKey="Ane J" first="Jean-Michel" last="Ané">Jean-Michel Ané</name>
<name sortKey="Jiang, Jiming" sort="Jiang, Jiming" uniqKey="Jiang J" first="Jiming" last="Jiang">Jiming Jiang</name>
<name sortKey="Venkateshwaran, Muthusubramanian" sort="Venkateshwaran, Muthusubramanian" uniqKey="Venkateshwaran M" first="Muthusubramanian" last="Venkateshwaran">Muthusubramanian Venkateshwaran</name>
<name sortKey="Wu, Lei" sort="Wu, Lei" uniqKey="Wu L" first="Lei" last="Wu">Lei Wu</name>
</noCountry>
<country name="États-Unis">
<region name="Wisconsin">
<name sortKey="Bhaskar, Pudota B" sort="Bhaskar, Pudota B" uniqKey="Bhaskar P" first="Pudota B" last="Bhaskar">Pudota B. Bhaskar</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000659 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000659 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19503835
   |texte=   Agrobacterium-mediated transient gene expression and silencing: a rapid tool for functional gene assay in potato.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19503835" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024